
News

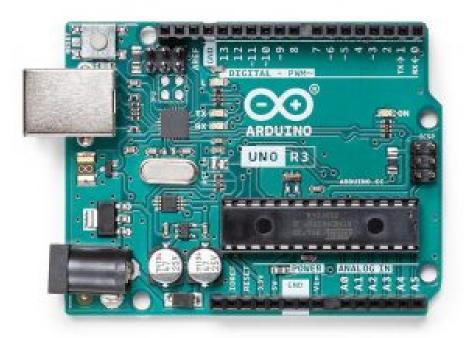
Elettronica a scuola con Arduino e Tinkercad

Speciale Coding di Maurizio Giaffredo

Secondaria di 1º grado - Coding

Scarica l'articolo in pdf:

L'avanzamento della tecnologia negli ultimi decenni è stato in buona parte foraggiato dallo sviluppo dell'**elettronica**. La rivoluzionaria invenzione dei **microchip** e la grande spinta impressa al loro perfezionamento ci hanno portato a essere



circondati da apparecchi elettronici, che utilizziamo quotidianamente senza nemmeno farci troppo caso.

A questa diffusione capillare di dispositivi sempre più sofisticati, però, non si è accompagnato un altrettanto capillare approfondimento del loro funzionamento. Se da un lato sembra ovvio che le questioni squisitamente tecniche siano appannaggio dei soli specialisti, dall'altro è evidente che la maggior parte delle persone ignori i **principi base di funzionamento** di un qualsiasi calcolatore, sia lato software che lato hardware. Questa carenza può avere delle importanti conseguenze sulla **capacità dei cittadini di leggere la realtà** e **interpretare ciò che li circonda**, configurandosi quindi a tutti gli effetti come un deficit culturale.

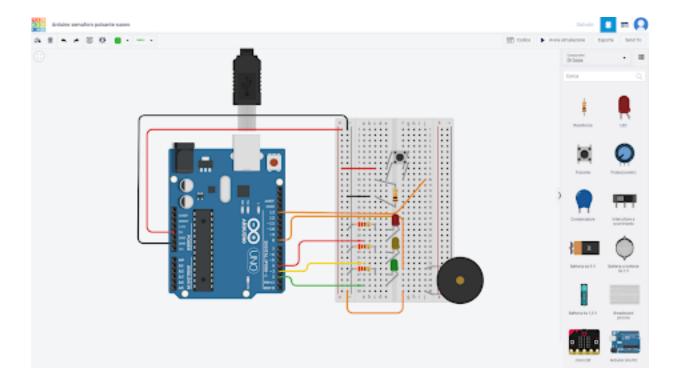
Questo è specialmente vero nel caso della maggior parte dei giovani. Ancora una volta, quindi, la scuola ha il compito di intervenire per colmare questa lacuna.

ARDUINO

Negli ultimi anni si sono moltiplicate le iniziative e le proposte per introdurre l'**elettronica educativa** nelle scuole secondarie di primo grado. In particolare, sembrano essere particolarmente efficaci quelle iniziative in cui gli studenti possano sviluppare dei progetti, lavorando **attivamente**.

Una delle soluzioni più adottate a livello scolastico è certamente **Arduino**, una scheda con un **microcontrollore** e una grandissima quantità di espansioni possibili, che la rendono flessibile e **utilizzabile in tanti contesti diversi**, da quello scolastico, a quello scientifico, a quello aziendale.

Arduino è probabilmente la **scheda oggi più diffusa** (ne esistono parecchie varianti) e deve il suo successo anche al fatto che è **open-source** sia a livello di schema dell'hardware (che è liberamente disponibile online) che a livello di software distribuito per la sua programmazione.


SIMULARE ARDUINO CON TINKERCAD

Non tutti però hanno a disposizione Arduino e comunque, prima di mettere le mani su una scheda reale, può essere utile fare esperienza in un **ambiente virtuale**, dove non si rischiano cortocircuiti. Per questo può venire in aiuto **Tinkercad**, una **web app** il cui nome è evocativo: rende possibile attività di **tinkering** sia nell'ambito della modellazione 3D (il settore in cui è nato) che nell'ambito della **simulazione di circuiti elettrici**.

Tinkercad è poi in grado di **simulare il funzionamento di una scheda Arduino** e dunque rappresenta un utilissimo banco di prova virtuale, con la possibilità di programmare anche tramite un **linguaggio a blocchi**.

Una vista di un progetto Tinkercad che simula un semaforo a chiamata pedonale azionato da Arduino Uno

UNA PARENTESI

Vale la pena aprire una piccola parentesi sulla **metodologia didattica** che può essere più adatta per proporre un lavoro in aula con gli strumenti citati. Essi si prestano infatti ad attività di **laboratorio**, in cui gli studenti sono liberi di **sperimentare**, di **sbagliare**, di **farsi domande**. In questo caso il laboratorio è quindi inteso nel senso delle **Indicazioni Nazionali**: non tanto un luogo, quanto più una **modalità** per avvicinarsi in modo **attivo** e **operativo** all'oggetto di studio.

Le Indicazioni Nazionali arrivano ad elevare questa modalità a riferimento costante per la didattica della tecnologia.

ALCUNI ESEMPI

Ci sono diversi progetti sul web che possono essere utili fonti di spunti didattici.

Un gran classico con cui si può partire è il **semaforo**, che consente di introdurre i **LED** e i **resistori**. Il lavoro può essere organizzato per step successivi e via via più complicati.

Progetti più sofisticati per studenti in gamba potrebbero proporre la realizzazione di piccoli **giochi interattivi** e/o l'utilizzo di **sensori**.

PER APPROFONDIRE

- Speciale Coding, Coding e tecnologia: semaforo verde per Arduino, Maurizio Giaffredo
- Sito ufficiale di Arduino
- Sito ufficiale di Tinkercad
- Progetto di un semaforo temporizzato, di Maurizio Giaffredo
- Progetto di un semaforo con pulsante per la prenotazione e cicalino, di Maurizio Giaffredo

SCOPRI L'OPERA

Presente e futuro

